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A Timeless Classic:
Passive Vision

Why does this first-person clip seem unnatural?




Computer Vision Success
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. 26% errors . 5% errors
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Robotic Success

edi——
—————————
——————
———————)
e
e ——
L —————
—_—e e —
D e —
e —
—————
e —

/ Beston Dynamics

https://www.youtube.com/watch?v=Jky9l1ihAkg



Robotic Success




why Actively control our

Perception?
A relevant question for several fields
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Perceiving in these environments is €
very complex:

* Occlusions
« Other moving agents to perceive
and coordinate with
Currently only humans are able to
cope with such level of perceptual
complexity...
And humans perceive (pro-)actively...




usions/Interference
CV Failures

Rosenfeld, Zemel & Tsotsos. ArXiv 2018



Robotic (not) Success

https://www.youtube.com/watch?v=g0TaYhjpOfo



Robotic (not) Success

Self occlusion...

https://www.youtube.com/watch?v=g0TaYhjpOfo




Actively Control Sensors to
overcome Perceptual Limits

Occlusions, Sensor Resolution, Limited Field of View, Noise
and other causes of Aliasing or Partial Observability




Foveal Vision: Human Eye Evolved to be
Active and Focus on Relevant Cues

40 20 0 20 40




Foveal Vision: Human Eye Evolved to be
Active and Focus on Relevant Cues




Active Perception (AP) Issues

Where to look?

e What to remember?

* Enough information?
* Enough time?
* Acquired information still valid?

*See also The Frame Problem
\, 'vf ' . . "“ ] h" e




Where To look?

Task Based Exploration
(Information On Demand)

Yarbus 1967
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Insufficient Task or Goal Information

* Learning

47



Active Perception and Learning

Active Perception is strongly
dependent on the task

<& 14

Learning a new task may require
learning a new Active Perception

policy




Active Percetion and Learning

49



Land 2006
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Difficulties of learning perception and

action control

* High dimensionality of the
observations

* Unknown/Infinite state dimensionality

* Partial Observability

 check:
* Ognibene, Volpi et al 2013
 Whitehead and Lin 1995

* Need to learn reusable skills

* No supervision or immediate feedback

* e.g. no reward for watching the right
object

Ognibene & Baldassare 2015



ANN Controlled Camera-Arm Robot

Attention
Control

Top Down
Pathwa
y Pathway
periphery Arm control
i SEgEEE system
fovea -5

Ognibene & Baldassarre, 2015



Attention
Control

Arm control
system

FILTERED
IMAGE

BOTTOM-UP
ATTENTION

Ognibene & Baldassarre, 2015
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Base Ecologilic Task
Behavioural analysis

Frequency

4 6 8 10
Saccade sequence per actior

sequence of targets in saccade before
reaching action started (after learming)



Internal dynamic
analysis

Distractor (t=2) Target (t=3)

Saliency




Actual World Structure

/" Task: in an environment with salient
(bright and big) green object learn to find
and touch the red object with no
supervision. Agent can see the colour of
oneobjectattime. |
\_The blue objects are randomly positioned

4 Acquired neural representation of )

blue stimulus describing next gaze

movement convenient to perform
the task: up,down,near right

\_ It presents order! )

Ognibene & Baldassarre, IEEE TAMD, 2015



Subjective and efficient
representations

Perceived World biased by Active Perception
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Targets in saccade sequenct

027 observations
and their
0 2 4 6 8 10 frequency (grey)

Saccade sequence per actior after learnino

Ognibene & Baldassarre, IEEE TAMD, 2014




Experimental Results:
Decision Time

2
=2}
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* Initially a
reaching action
starts after
1l /saccades after
scene changed

saccades x trial
5 o =2 o o » 3R R

=] o = ]
T T T

* Tncreases to 26
saccades

| | | | |
20 40 60 80 100
training trials

=]

e Stabilises at

about 7 saccades Average number of

saccades per reaching
action during learning
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Saliency Role Test

saliency number of saccades
cue | distr. | trials to steady | avg. reward | max | initial avg. | final avg.
0.6 0.6 1 1 14 5.1331 5.0821
0.8 0.6 4 0.9951 60 6.1678 5.8852
1.0 0.6 41 0.9957 55 6.8448 5.9302
0.6 0.8 7 0.9851 42 6.7102 6.1334
0.8 0.8 4 0.9778 35 6.9981 6.4806
1.0 1 08 | _._._ 23 . _._. _.-0.9811._._.66_|_.7.0478 | 6.2394
0.6 :1_0 83 0.9502 145 9.9367 _ _7;_ _i%_l_S?_?'_:
08 | 1.0 | 78 " 7 T0.9804° T [ 387 | T 12.2187 7.4450
1.0 1.0 74 0.9604 1727 16.3086 7.2732

Target saliency 0.8

Only learning 1is affected by clutter while final

performance are minimally affected by cue saliency

The trial to steady is very dependent on the presence of
an object that i1s more salient than the target

69



Foveal Vision May Speed-up Task Learning

Reinforcement Learning Framework for Autonomous Task Learning.
Usually problematic with partial observability (core for AP).

Constraints Focus Task
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Ognibene & Baldassare IEEE TAMD 2015 /¢



Insufficient Task or Goal Information

* Learning
* Deciding what task to execute
» Task/Goal depending on other agents’ presence/intentions




Active Perception and
Mirror Neurons

Simulation theory Can Motor Control

& Motor Control System J System predict

others’ actions?

e State(o) ’ Observation Model Jir

 Encode action goal

 Abstracts
trajectory
 Needs perceptions

90




Active Perception and
Mirror Neurons

Simulation theory
4 J Needs perceptions:

Motor Control System
Inverse Forward ¢ Affo rd ance.
* Presence

Goal Model Action model

* ldentity
@——( Observation Model . Position
omenation ) *  Orientation
 Effector:
mirror . Timing
neuron

« Configuration
* Context

91



Hunting or being hunted?
Context in behavior prediction

Observer’s
eye

S




Time constraints and Structured context
Context in behavior prediction
Hunting or hunted?

Context 1




Time constraints and Structured context
Context in behavior prediction
Hunting or hunted?

Context? @




Time constraints and Structured context
Context in behavior prediction
Hunting or hunted?

Context? @

Context 1
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Different hypotheses of target position

Equally probable, not seen )
Perceive to reduce

Q Q Q uncertainty

Observer’s

Field o view Observer’s

~ e // o
/ /  Performer’s
I / / hand

See also “Perceptions as
hypotheses: saccades as
experiments, Friston et al. 2012”



Hand movement changes distribution on target position

Perceive to reduce
uncertainty

Field of view




Field of view

Perceive to reduce
uncertainty

, Saccade to
' target

@ Q @ hypothesis



Field of view

Perceive to reduce
uncertainty

No target at
position
observed



Field of view

Perceive to reduce
uncertainty

Update
Distribution



Info Gain Perceptio
Anticl

n Control for Action
nation

Observe to Minimize Expected Uncertainty of Event (V)

ét _ argmin/p<0t‘00...t—l’9t>H(V’OO...t790...t)d0t

91&
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Goal Recognition as Inverse Control (+ Observer Model)

Ognibene & Demiris [JCAl 2013



Info Gain Using Kalman Filters
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Expected events

Entropy P

Ognibene & Demiris IJCAl 2013



Results
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Results: Anticipate Performer Hand

Ognibene & Demiris 1JCAl 2013



STARE

Spatio-Temporal Attention Relocation for Multiple
Structured Activities Detection
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fiore, Tom Foulsham
Essex, Colchester, UK

* 15 views:
5 thetas x 3
phis
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View Percentage
Frequency in SCM

e Humans in the SCM selected more
often the front and middle-height
views than the chance.

* They selected less often the bottom,
top-back views than the chance;

* Chanceis 4.16% (100 % / 24 views);

* The view selection positively correlates
with of the NM view accuracy, r=.60,
p<.01;

* The view selection negatively
correlates with of the NM view RT,
r=.62, p<.01;

* People selected views efficiently.

¢ (degrees)

135

Zdh

oSET

Carmelo Calafiore, Tom Foulsham
University of Essex, Colchester, UK

View Percentage Frequency of SCM
at 0 frames before last frame 9

-135 45 45 135
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Multi-VIEW Image (MVI) in SCM
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Multi-VIEW Image (MVI) in IC and ISC

Carmelo Calafiore, Tom Foulsham
University of Essex, Colchester, UK
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Carmelo Calafiore, Tom Foulsham
University of Essex, Colchester, UK

Correlation of

Correlation Matrix of the Views

d Off t Dv f th WM accuracy 1 1.00 -.88 60 -53 37 38

| e re n S O e waer{ -88 100 -62 .63  -59  -57

* SCM frequency { .60 -62 1.00 -75 22 -07
VIEWS :

scMnMov{ -53 .63  -75 100 -30  -17

The view selection does not correlate with the view accuracy of cmetpere 4 37 | o590 | 22 | 30 o0 se

both Computer models" |STM Accuracy 4| .38 -57 | -07 -17 88 1.00

NM RT DVSSEMNMOV LSTM Accuracy

The view accuracy of the models positively correlates with of

the NM view accuracy;

P values of the Correlation Matrix of the Views

NM accuracy

The view accuracy of the models negatively correlates with of

MM RT

the NM view RT;

DVs

SCM N Mov

Resnet Accuracy -

LSTM Accuracy

.00 .00 .00 .01 .07 .07
.00 .00 .00 .00 .00 .00
.00 .00 .00 .00 31 75
.01 .00 .00 .00 .16 44
.07 .00 31 16 .00 .00
.07 .00 75 44 .00 .00

T y y T T T
MM accuracy SCM frequency Resnet Accuracy
NM RT SCM N Mov

LSTM Accuracy
DVs



Perceive to reduce
uncertainty

Update
Distribution

Goal Directed Behaviours

169



WHAT HAPPENS IF WHO WE OBSERVE IS LOOKING
FOR SOMETHING TOQO?

Perceive to reduce
uncertainty

Distribution

Goal Directed Behaviours



WHAT HAPPENS IF WHO WE OBSERVE IS LOOKING
FOR SOMETHING TOQO?

How do we learn to predict
what partners are missing
and need to see for any
context and task?

Bianco & Ognibene HRI 2020
Bianco & Ognibene ICSR 2019
Bianco & Ognibene CEEC 2019




EMBODIED MODELS FOR EMERGENCE
OF THEORY OF MIND

Francesca
Bianco

Theory of mind (ToM), or mentalizing, is
the cognitive ability to attribute &
represent others” mental states, i.e.
intentions, beliefs and desires .

It has advantages for:

* Coordinating and managing false-beliefs

* Proactivity and preparation

* Active perception

* Learning

Ognibene & Demiris IJCAI 2013
Ognibene & Baldassarre AMD 2015
Bianco & Ognibene ICSR 2019
Ognibene et al. ICSR 2019

Bianco & Ognibene HRI 2020
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EMBODIED MODELS FOR EMERGENCE

OF THEORY OF MIND

Learns autonomously to predict
“belief-determined behaviors”
with no explicit information about
other’s beliefs, which are not
accessible

Francesca
Bianco

Rabinowitz et al NIPS 2018

\

Deep Neural Network

Observed agent trajectory
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EMBODIED MODELS FOR
EMERGENCE OF THEORY OF MIND

Learns autonomously to predict “belief-determined
behaviors” with no explicit information about Francesca
other’s beliefs, which are not accessible Bianco

Rabinowitz et al NIPS 2018

Deep Neural Network

Observed agent trajectory
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EMBODIED MODELS FOR
EMERGENCE OF THEORY OF MIND

Learns autonomously to predict “belief-determined

behaviors” with no explicit inform>*
other’s beli

Francesca
Bianco

et al NIPS 2018

e Can we learn a more
explicit and «shared»

representation? \

/

Peural Network

Observed agent trajectory
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EMBODIED MODELS FOR EMERGENCE
OF THEORY OF MIND

Francesca
Bianco

In publication

Predicted other’s
belief

Deep neural network

Observed agent trajectory

Deep Neural Network

Observed agent trajectory
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EMBODIED MODELS FOR EMERGENCE
OF THEORY OF MIND

Learnt through self-observation of
agent own beliefs during behavior
(meta-cognition, quite simple In publication
implementation)..

Francesca
Bianco

W

Predicted other’s
belief

Deep neural network

Observed agent trajectory

Deep Neural Network

Observed agent trajectory
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EMBODIED MODELS FOR EMERGENCE
OF THEORY OF MIND

Learnt through self-observation o
agent own beliefs

Francesca
Bianco

 Can we learn a more
explicit and «shared»
representation?

~— o [s learning two things at \
the same time harder?

4 other’s
arget,

Peural Network

Observed agent trajectory



EMBODIED MODELS FOR EMERGENCE
OF THEORY OF MIND

Relative performance gain of explicit belief architecture
in generic behavior

Francesca
Bianco

== general behaviour

\/\/
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EMBODIED MODELS FOR EMERGENCE
OF THEORY OF MIND

Relative performance gain of explicit belief architecture
in generic behavior and in the search segment

Francesca
Bianco

m= general behaviour == search

\/\/

10 Train 15 Train 20 Train 25 Train 30 Train 60 Train 120 Train 300 Train 181
Maps Maps Maps Maps Maps Maps Maps Maps




EMBODIED MODELS FOR EMERGENCE
OF THEORY OF MIND

Relative performance gain of explicit belief architecture
in generic behavior and in the search segment

Francesca
Bianco

Generic, Search , search 1 obj and search 2 obj
B Generic [ Search search 1 aligned distractor search 2 aligned distractor

50
40
30
20

10

|

10 Train 15 Train 20 Train 25 Train 30 Train 60 Train 120 Train 300 Train
Maps Maps Maps Maps Maps Maps Maps Maps

Train Maps
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Thanks for your
attention!



Special thanks to the following colleagues

< "
-

r

i

|
.

7.

Thrish . Hector Yiannis Giovanni
Nanayakkara Ka?U:é:jton Geffner Demiris Pezzulo
(KCL) (UPF) (Imperial) (CNR)

Kris De  Salvador Daria  Vincenzo Kyuhwa Giuseppe Gioyanni
Meyer Soto Kvasova G. Fiore Lee Giglia Farlpella
(KCL) (UPF) (UPF) (UT Dallas) (UT Dallas) (EPFL) (UniPa) (UniCT)

Thanks for your attention



