

"Implicit learning prevails over explicit learning during prediction of possible outcomes under perceptual uncertainty"

Speaker: Valentina Bianco

Implicit learning vs. Explicit learning

Implicit learning includes the ability to:

- learn also without awareness (Reber, 1989; Kaufman et al., 2010)
- extract the statistical regularities occurring among sensorial events (Saffran et al., 1996; Schapiro & Turk-Browne, 2015)
- leverage previous experience (*Liebermann, 2000*) to manage the sensorial world

Stable, long-term

Explicit learning concerns:

 monitoring one's performance allowing a prompt updating in reaction to feedback (Ullsperger et al., 2020)

Flexible, short-term

Everyday life and implicit learning

During social interactions, we try to guess the action intentions of our peers on the basis of **kinematics** (*Killner et al., 2007*) and **contextual cues** (*Kilner, 2011*)

Both sources of information are provided by previous experience of the sensory world, but <u>context plays a major role in case of ambiguous</u> <u>kinematics information</u> (*Amoruso & Urgesi, 2016*)

Kinematics vs. Contextual information

Although <u>changes in kinematics are quite enough to understand action</u> <u>intention</u> (*Cavallo et al., 2018*), **contextual information** might drive the prediction of future events, **in situations of perceptual uncertainty** (*Amoruso et al., 2019;Bianco et al., 2020; Betti et al., 2021*)

<u>Action prediction performance is improved</u> when actions are embedded in <u>congruent/high-probability contexts</u> and <u>hampered in incongruent/low-</u> <u>probability contexts</u> as a result of implicit learning mechanisms

Congruent

Incongruent

10% (2 trials) 90% (18 trials) 40% (8 trials) 60% (12 trials) Amoruso et al., 2019

Study 1

Given that, in situations of perceptual ambiguity, <u>implicitly learnt</u> <u>contextual associations affect performance</u> we aimed to understand if this can be influenced **by explicit performance feedback**

The feedback could:

- <u>reinforce contextual information</u> independently from the sensorial information (contextual feedback)
- <u>reinforce sensorial information</u> independently from the contextual information (sensorial feedback)

Hypotheses on prediction performance:

- 1) <u>contextual feedback</u> should *exacerbate the difference* between high-probability and low-probability scenarios
- sensorial feedback should improve low-probability and cancel out the difference with high-probability scenarios

Results

Discussion

Thecontextualfeedbackexacerbatedtheeffectsofthecontextualfacilitation

Top-down expectations (predictive
coding, *Friston, 2010*) generated by context deeply affect the prediction of social and non-social events

The sensorial feedback did not suppress the contextual prior effect

It is difficul to ignore contextual information (Amoruso et al., 2016, 2018, 2019;Iacoboni et al., 2005; Wurm & Schubotz, 2017)

Study 2 We aimed at understanding if contextual priors are only used in case of *uncertain kinematics* or also in case of *fully available kinematics*

Context and Autistic traits

It has been shown that *contextual learning is impaired in ASD* (*Pellicano and Burr, 2012*) and **the presence of subclinical autistic traits would correlate with the lack of benefits associated to contextual exposure** (*Amoruso et al., 2016, 2018b, 2020; Palmer et al., 2015*)

Autistic traits have been measured with the **Autism Quotient** (AQ, *Baron Cohen et al., 2001*) a self-report questionnaire assessing five domains related to ASD deficits (social skills, attention to detail, communication, imagination, attention switching)

Results and discussion

For all time intervals, selecting the action ^{2.0} inferred by the most probable scenario ^g 1,0 suggested by the color cue was always the preferred option compared to that associated to 0,0 low-probability priors

Even in the last time interval, where the kinematics cues clearly unveil the type of action for trials previously associated to low probability scenarios, participants were not able to ignore the contextual prior

Contextual Facilitation Index Interval 5				
Coefficients	β	t	p-Level	Tolerance
Attention Switching	0,207	1,474	0,145	0,661
Attention to detail	0,248*	2,073	0,042	0,913
Communication	-0,093	-0,648	0,519	0,636
Imagination	-0,141	-1,200	0,234	0,940
Social skills	0,142	1,058	0,293	0,726

Correlation with Attention to Detail (AQ, Autism Quotient, *Baron-Cohen 2001*)

General discussion

- Kinematics and Contextual information are always integrated at all stages of the unfolding of a motor act, independently from the ambiguity of kinematics cues
- <u>Contextual information biased action prediction</u> even *in case of fully visible kinematics*
- Explicit feedback on kinematics (sensorial) information does not cancel out contextual effects
- Tasks manipulating contextual information can aid to a better understanding of sublinical/clinical ASD

Upcoming studies will use TMS to test to what extent motor cortex excitability reflects the observed behavioural results

Prof. Cosimo Urgesi

Alessandra Finisguerra Ph.D

Giulia D'Argenio

Thanks for your attention !!