

"Past, Present and Future Brains"

RECENT ADVANCES IN WHOLE-BRAIN, CONNECTOME-BASED NEUROPHYSIOLOGICAL MODELLING: THEORETICAL PERSPECTIVES AND CLINICAL IMPLICATIONS

Growing interest in Whole-brain modelling

THEVIRTUALBRAIN.

Google Scholar search "Whole-brain modelling"

OHBM's Educational Course 2023

Whole-brain, Connectome-based Models of Brain Dynamics: From Principles to Applications **OHBM Educational Course on Whole-brain Models**

HOME ORGANIZERS SPEAKERS SCHEDULE LECTURES MATERIALS

Materials

Educational Course Hands-on Materials

The entire course can be easily run in Google Colab. However, if you prefer to run the notebook on your local machine, please ensure that you have installed all the necessary dependencies.

The Google Colab can be downloaded at the following link:

LINK

In the 'hands_on_session' folder, you will find all three notebooks necessary to follow along with the session. Additionally, the 'Talk_short_Demo' folder contains the notebooks used by some of the speakers during their theoretical talk.

Spatial Scale in Computational Neuroscience

Whole-brain Modelling

Griffiths et al., 2022

"Past, Present and Future Brains"

George E.P. Box

Home > Computational Modelling of the Brain > Chapter

Whole-Brain Modelling: Past, Present, and Future

John D. Griffiths 🗁, Sorenza P. Bastiaens & Neda Kaboodvand

Chapter First Online: 08 October 2021

1708 Accesses 2 Citations

Part of the Advances in Experimental Medicine and Biology book series (CNNCSN, volume 1359)

"All models are wrong But some are useful"

Michele Giugliano Mario Negrello Daniele Linaro *Editors*

Computational Modelling of the Brain

Modelling Approaches to Cells, Circuits and Networks

camh

Krembil Centre for Neuroinformatics

UNIVERSITY OF TORONTO

Stanford Keller Laboratory PERSONALIZING NEUROTHERAPEUTICS

Dissecting the spatio-temporal connectivity dynamics of the stimulation induced signal

DAVIDE MOMI

Post-Doctoral Research Fellow Whole Brain Modelling Group Krembil Centre for Neuroinformatics Centre for Addiction & Mental Health(CAMH) https://davi1990.github.io/ 250 College St., Toronto, ON M5T 1R8

Società Italiana di Psicofisiologia e Neuroscienze Cognitive

The Perturbative Method in Neuroscience

Anatomical Connections

Functional Dynamics

Combining Brain stimulation with ongoing EEG recordings

TMS-EEG for studying brain complexity

Rosanova, Fecchio et al., 2018 – Nature Communications

⁽⁸⁾ 1¹⁵

10

0

2

400

300

]0

.

Paperman

"Everything goes, everything comes back; eternally rolls the wheel of being. Everything dies, everything blossoms again; eternally runs the year of being" Friedrich Nietzsche

The Starry Night

"...poetry cannot speak without remembering the turns of the sun and moon, and the rhythm of the ocean, and the **recurrence** of human generations, the **returning waves** of life and death." Robinson Jeffers

Networks propagation is affected by earlier lesions

Momi et al., 2023 – eLife

Overarching organization of large-scale brain networks

274

-2

-4

6

n

2

Search information asymmetry

Seguin et a., 2019 – Nat Comm

Scientific Questions

Q#1: What are the differences in the propagation pattern between networks?

Simultaneous hd-EEG and sEEG dataset

- Simultaneous stereotactic electroencephalography (sEEG) and highdensity scalp EEG (hd-EEG) during intracortical single pulse electrical stimulation
- 36 patients 323 sessions
- Dataset collected at the "Claudio Munari" Epilepsy Surgery Center of Milan in Italy

Mapping stimulation location with high-resolution

Density (# of sessions)

Stronger propagation pattern when external stimulation targets high-order multimodal networks

Margulies et al., 2016 - PNAS

Seguin et a., 2019 – Nat Comm

Scientific Questions

Q#1: What are the differences in the propagation pattern between networks?

- Intracranial electrical stimulation (iES) leads to downstream electrophysiological evoked responses which nature follows the RSNs cortical gradient hierarchical structure demonstrated using neuroimaging data
- A significantly stronger propagation pattern when the stimulus was targeted at high-order networks (e.g. Default and Frontoparietal networks), particularly for the late evoked responses
- This trend was found both in the hd-EEG and sEEG data, testifying the replicability using different scales of spatial

Jansen-Rit model (1995)

Schematic Overview

"Goodness" of Fit

Q#2: Does this difference rely on different process (integration vs segregation)?

Virtual Lesion Approach

Late responses are either locally or globally driven

Global Mean Field Power Intact Connectome

Future Perspective: Why is that important?

Neuronal Activation

Magnetic Coil

Electrical Field

Courtesy of Dr. Williams

200

Voineskos et al., 2019 – Biological Psychiatry

300

Can we used the model to predict patients' clinical outcome?

100

-100

400

Manifold predicts clinical outcome

Manifold predicts clinical outcome

Momi et al., 2023 – in prep

Future Directions

https://github.com/GriffithsLab/PyTepFit

Davi1000 Davida

Search or jump to / Pull requests Issues	Marketplace Explore			¢ +• < <u>@</u> •
GriffithsLab / PyTepFit Public			ি Edit Pins ▼ ③ Watch 1 ▼	약 Fork 0 ☆ Star 0 ▼
<> Code 💿 Issues 📫 Pull requests 💿 Actions 🗄 Projects	🖽 Wiki 🔃 Security 🗠 Insights 🔞 Sett	ings		
💡 main 👻 🕈 1 branch 💿 0 tags		Go to file Add file - Code -	About	¢3
Davi1990 Update README.md	Davi1990 Update README.md 52f945f 17 hours ago 3 21 commi		No description, website, or topics provided.	
bata data	first commit	7 days ago	☆ 0 stars	
img	first commit	7 days ago	1 watching O forks	
nb	new nbs	2 days ago	5 0101K3	
tepfit	first commit	7 days ago	Releases	
gitignore	Add files via upload	7 days ago	No releases published	
C README.md	Update README.md	17 hours ago	Create a new release	
i README.md		Ø	Packages	
Modelling large-scale brain network dynamics			No packages published Publish your first package	
underlying the TMS-EEG evoked response			Contributors 2	

Waiting for api.github.com...

This repository includes the code required to reproduce the results in: "TMS-EEG evoked responses are driven by

Acknowledgements

Alvaro Pascual-Leone MD, PhD

Mouhsin Shafi MD, PhD

Josef Parvizi, MD PhD

UNIVERSITÀ DEGLI STUDI DI MILANO

Andrea Pigorini PhD

Matti Hämäläinen PhD camh

Daphne Voineskos MD, PhD

Sean Hill PhD

Corey Keller MD, PhD

UNIVERSITY OF TORONTO

Acknowledgements

Krembil Centre for Neuroinformatics

Whole Brain Modelling

Dr. Zheng Wang Data Analyst

Taha Morshedzadeh M.Sc. Student

Frank Mazza M.Sc. Student

Kevin Kadak M.Sc. Student

FuTe Wong

PhD Student

Dr. John Griffiths <u>Team Leader</u>

Parsa Oveisi M.Sc. Student

Andrew Clappison M.Sc. Student

Shreyas Harita PhD Student

Sorenza Bastiaens PhD Student

